BoxRetriever
This will help you getting started with the Box retriever. For detailed documentation of all BoxRetriever features and configurations head to the API reference.
Overview
The BoxRetriever
class helps you get your unstructured content from Box in Langchain's Document
format. You can do this by searching for files based on a full-text search or using Box AI to retrieve a Document
containing the result of an AI query against files. This requires including a List[str]
containing Box file ids, i.e. ["12345","67890"]
Box AI requires an Enterprise Plus license
Files without a text representation will be skipped.
Integration details
1: Bring-your-own data (i.e., index and search a custom corpus of documents):
Retriever | Self-host | Cloud offering | Package |
---|---|---|---|
BoxRetriever | ❌ | ✅ | langchain-box |
Setup
In order to use the Box package, you will need a few things:
- A Box account — If you are not a current Box customer or want to test outside of your production Box instance, you can use a free developer account.
- A Box app — This is configured in the developer console, and for Box AI, must have the
Manage AI
scope enabled. Here you will also select your authentication method - The app must be enabled by the administrator. For free developer accounts, this is whomever signed up for the account.
Credentials
For these examples, we will use token authentication. This can be used with any authentication method. Just get the token with whatever methodology. If you want to learn more about how to use other authentication types with langchain-box
, visit the Box provider document.
import getpass
import os
box_developer_token = getpass.getpass("Enter your Box Developer Token: ")
If you want to get automated tracing from individual queries, you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installation
This retriever lives in the langchain-box
package:
%pip install -qU langchain-box
Note: you may need to restart the kernel to use updated packages.
Instantiation
Now we can instantiate our retriever:
Search
from langchain_box import BoxRetriever
retriever = BoxRetriever(box_developer_token=box_developer_token)
For more granular search, we offer a series of options to help you filter down the results. This uses the langchain_box.utilities.SearchOptions
in conjunction with the langchain_box.utilities.SearchTypeFilter
and langchain_box.utilities.DocumentFiles
enums to filter on things like created date, which part of the file to search, and even to limit the search scope to a specific folder.
For more information, check out the API reference.
from langchain_box.utilities import BoxSearchOptions, DocumentFiles, SearchTypeFilter
box_folder_id = "260931903795"
box_search_options = BoxSearchOptions(
ancestor_folder_ids=[box_folder_id],
search_type_filter=[SearchTypeFilter.FILE_CONTENT],
created_date_range=["2023-01-01T00:00:00-07:00", "2024-08-01T00:00:00-07:00,"],
k=200,
size_range=[1, 1000000],
updated_data_range=None,
)
retriever = BoxRetriever(
box_developer_token=box_developer_token, box_search_options=box_search_options
)
retriever.invoke("AstroTech Solutions")
[Document(metadata={'source': 'https://dl.boxcloud.com/api/2.0/internal_files/1514555423624/versions/1663171610024/representations/extracted_text/content/', 'title': 'Invoice-A5555_txt'}, page_content='Vendor: AstroTech Solutions\nInvoice Number: A5555\n\nLine Items:\n - Gravitational Wave Detector Kit: $800\n - Exoplanet Terrarium: $120\nTotal: $920')]
Box AI
from langchain_box import BoxRetriever
box_file_ids = ["1514555423624", "1514553902288"]
retriever = BoxRetriever(
box_developer_token=box_developer_token, box_file_ids=box_file_ids
)
Usage
query = "What was the most expensive item purchased"
retriever.invoke(query)
[Document(metadata={'source': 'Box AI', 'title': 'Box AI What was the most expensive item purchased'}, page_content='The most expensive item purchased is the **Gravitational Wave Detector Kit** from AstroTech Solutions, which costs **$800**.')]
Citations
With Box AI and the BoxRetriever
, you can return the answer to your prompt, return the citations used by Box to get that answer, or both. No matter how you choose to use Box AI, the retriever returns a List[Document]
object. We offer this flexibility with two bool
arguments, answer
and citations
. Answer defaults to True
and citations defaults to False
, do you can omit both if you just want the answer. If you want both, you can just include citations=True
and if you only want citations, you would include answer=False
and citations=True
Get both
retriever = BoxRetriever(
box_developer_token=box_developer_token, box_file_ids=box_file_ids, citations=True
)
retriever.invoke(query)
[Document(metadata={'source': 'Box AI', 'title': 'Box AI What was the most expensive item purchased'}, page_content='The most expensive item purchased is the **Gravitational Wave Detector Kit** from AstroTech Solutions, which costs **$800**.'),
Document(metadata={'source': 'Box AI What was the most expensive item purchased', 'file_name': 'Invoice-A5555.txt', 'file_id': '1514555423624', 'file_type': 'file'}, page_content='Vendor: AstroTech Solutions\nInvoice Number: A5555\n\nLine Items:\n - Gravitational Wave Detector Kit: $800\n - Exoplanet Terrarium: $120\nTotal: $920')]
Citations only
retriever = BoxRetriever(
box_developer_token=box_developer_token,
box_file_ids=box_file_ids,
answer=False,
citations=True,
)
retriever.invoke(query)
[Document(metadata={'source': 'Box AI What was the most expensive item purchased', 'file_name': 'Invoice-A5555.txt', 'file_id': '1514555423624', 'file_type': 'file'}, page_content='Vendor: AstroTech Solutions\nInvoice Number: A5555\n\nLine Items:\n - Gravitational Wave Detector Kit: $800\n - Exoplanet Terrarium: $120\nTotal: $920')]
Use within a chain
Like other retrievers, BoxRetriever can be incorporated into LLM applications via chains.
We will need a LLM or chat model:
- OpenAI
- Anthropic
- Azure
- AWS
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
- Databricks
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
# Ensure your VertexAI credentials are configured
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-aws
# Ensure your AWS credentials are configured
from langchain_aws import ChatBedrock
llm = ChatBedrock(model="anthropic.claude-3-5-sonnet-20240620-v1:0",
beta_use_converse_api=True)
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
pip install -qU databricks-langchain
import getpass
import os
os.environ["DATABRICKS_TOKEN"] = getpass.getpass()
from databricks_langchain import ChatDatabricks
$os.environ["DATABRICKS_HOST"] = "https://example.staging.cloud.databricks.com/serving-endpoints"
llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct")
openai_key = getpass.getpass("Enter your OpenAI key: ")
Enter your OpenAI key: ········
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
box_search_options = BoxSearchOptions(
ancestor_folder_ids=[box_folder_id],
search_type_filter=[SearchTypeFilter.FILE_CONTENT],
created_date_range=["2023-01-01T00:00:00-07:00", "2024-08-01T00:00:00-07:00,"],
k=200,
size_range=[1, 1000000],
updated_data_range=None,
)
retriever = BoxRetriever(
box_developer_token=box_developer_token, box_search_options=box_search_options
)
context = "You are a finance professional that handles invoices and purchase orders."
question = "Show me all the items purchased from AstroTech Solutions"
prompt = ChatPromptTemplate.from_template(
"""Answer the question based only on the context provided.
Context: {context}
Question: {question}"""
)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke(question)
'- Gravitational Wave Detector Kit: $800\n- Exoplanet Terrarium: $120'
Use as an agent tool
Like other retrievers, BoxRetriever can be also be added to a LangGraph agent as a tool.
pip install -U langsmith
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain.tools.retriever import create_retriever_tool
box_search_options = BoxSearchOptions(
ancestor_folder_ids=[box_folder_id],
search_type_filter=[SearchTypeFilter.FILE_CONTENT],
created_date_range=["2023-01-01T00:00:00-07:00", "2024-08-01T00:00:00-07:00,"],
k=200,
size_range=[1, 1000000],
updated_data_range=None,
)
retriever = BoxRetriever(
box_developer_token=box_developer_token, box_search_options=box_search_options
)
box_search_tool = create_retriever_tool(
retriever,
"box_search_tool",
"This tool is used to search Box and retrieve documents that match the search criteria",
)
tools = [box_search_tool]
prompt = hub.pull("hwchase17/openai-tools-agent")
prompt.messages
llm = ChatOpenAI(temperature=0, openai_api_key=openai_key)
agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools)
/Users/shurrey/local/langchain/.venv/lib/python3.11/site-packages/langsmith/client.py:312: LangSmithMissingAPIKeyWarning: API key must be provided when using hosted LangSmith API
warnings.warn(
result = agent_executor.invoke(
{
"input": "list the items I purchased from AstroTech Solutions from most expensive to least expensive"
}
)
print(f"result {result['output']}")
result The items you purchased from AstroTech Solutions from most expensive to least expensive are:
1. Gravitational Wave Detector Kit: $800
2. Exoplanet Terrarium: $120
Total: $920
API reference
For detailed documentation of all BoxRetriever features and configurations head to the API reference.
Help
If you have questions, you can check out our developer documentation or reach out to use in our developer community.
Related
- Retriever conceptual guide
- Retriever how-to guides